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Abstract-The author proposes in the paper an application of the methods based on the principles 
of irreversible thermodynamics to describe the conditions under which laminar viscous flow becomes 
unstable thermodynamically. It is shown that this “point of instability” may be calculated for the round 
pipe and infinite channel flow according to the so-called Meissner’s entropy principle. 

The actual undelayed transition may be approximately calculated by a trivial modification of the 
original Meissner’s entropy principle according to the theorem of the mean, and taking account of the 
fact that during an idealized transition (at a constant mean velocity and without any temperature change) 
the actual kinetic energy of the fluid based on the steady-state velocity distribution must be considered 

separately for each regime. 

NOMENCLATURE 

coefficient in expression for f;urb ; 
area; 

exponent in expression for AUrb ; 
half width of channel; 
pipe diameter; 

flow friction coefficient for viscous flow; 
coefficient in expression for f;,, ; 

= s $u” dAJUA, 
A 

based on actual velocity distribution during 

each fraction of cycle, l/7 velocity profile 
during turbulent period; 
significant length; 
pressure; 

Reynolds number, ULp/p; 
entropy; 
local velocity in the x direction; 

average velocity in the x direction; 
distance from pipe entrance; 
dimension perpendicular to flow direction; 

fraction of cycle time flow stays turbulent; 
dynamic viscosity; 
density; 
shear stress; ‘s~“~,, = a(ReJb$pU2y/L; 
average value. 

Subscripts 

D, d, significant length on which Re is based; 

cr, signifies the critical Reynolds number; 

4 signifies the point where intermittent flow 
starts; 

lam, 
turb, 

signifies the character of the flow regime; 

0, conditions at the origin. 

INTRODUCTION 

So FAR, attempts to treat transition in round pipes 

and infinite channels mathematically have not been 

particularly successful. Of some interest, therefore, are 
the applications of the so-called “Meissner’s entropy 
principle” [l] to the problem of transition [2-41 that 

seem to show some promise in that respect [5]. 
Experimental observations (e.g. by Sackmann and 

his collaborators [6,7] and by Rotta [8]) have estab- 
lished that the originally laminar pipe flow, as the 

Reynolds number is increased, starts to fluctuate 
between periods of alternating laminar and turbulent 
flow. This “intermittent flow” starts with the inter- 
mittency factor of y = O+ at Rei, called here “the point 
of instability”, and ends at y = 1, when the flow became 
completely turbulent. 

The actual flow behavior before and after transition 
can be re-constituted, for example, from the integration 
of (ideally) fully laminar and fully turbulent periods 
which quickly follow each other [6-81. The transition 
is then observed when the time-averaged properties 
(e.g. the pressure drop) exhibit a characteristic change 
of slope, at the instant that the lower critical Reynolds 
number, Re,,, has been reached as (ideally) the end 
result of infinitesimal changes in Re, as shown, e.g. 
in Fig. 1. 
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FIG. 1. Instantaneous and average values of pipe friction 
factor 1 in transition region by selected authors; Schiller’s 
gap between disturbing plate and pipe entrance 0.6-1.2 mm, 
and .x/D + co ; Curve 1 = Hagen-Poiseuille formula for 

f ,am. curve 2 = Blasius formula for Jurb, and curve 3 = 
Meissner and Schubert formula for Jurb adapted for low 

Re, values. 

STATEMENT OF THE PROBLEM 

According to the Meissner’s entropy principle [l], 
at the time of transition (considered to be an isothermal 
process) when the quasi-steady, fully developed flow 

has been reached. 

(Ash., = (AL, (1) 

which for an isothermal transition in a round pipe or 

an infinite channel may be expressed by the usual 
methods of reversible thermodynamics, for an incom- 

pressible fluid, as 

As = AP/VP) (2) 

which, however, for viscous flow could also be written as 

As = f/L”(~-x~)/(2TpL). (3) 

For Aa,,, = G/ReL, and fturb = u(RQ-~ combining 
equations (1) and (2) results in 

Re, = (G/u)“‘1-b’ (4) 

where, for a round pipe, L = D, G = 64, a = 0.3164, 
h = $ (based on the Blasius formula for viscous fric- 
tion [5]), and a = 0.153, and b = l/6 (according to a 
formula developed by Meissner and Schubert [l] 
(M & S formula here)), equation (4) yields ReD = 1200 

(when Blasius formula is used) and Ru, = 1400 (when 
M & S formula is used). The M & S formula was con- 
sidered by the authors as a more appropriate one for 
the relatively low range of Reynolds numbers where 
non-delayed transition occurs (Fig. 1). 

Following the experimental work of Sackmann rt d. 
[6.7], it appears that for instantaneous value of .fiurb 
the Blasius relation is quite satisfactory down to 

Rr, < 2000, well below the range of its steady-state 
validity. However, due to strongly empirical nature of 

both formulas for Jurbr they may be used both to at 
least mark off the range where at first the point of 

instability Rei, and then the critical Reynolds number, 

Ret,, is likely to occur during a non-delayed transition. 

It is interesting to note that extrapolation of Rotta’s 

data to y = 0 produces a Reynolds number range 
which is not inconsistent with the above results if the 

point of instability is accepted to be in the range 

1200 < ReD,i < 1400. Moreover. Whan and Rothfuss 
[9] have independently observed at Re, = 1200 the 
start of a small, but definite, upward trend from the 

theoretical value of ,&,,,, Results that appeared before 
somewhat suspicious (cf. discussion ofsome of Knodel’s 
conclusions [lo] and of the Reichardt’s result [ 111 

R%,,, = 1500 by Schiller [U]) acquire an entirely 

new significance if the Meissner’s entropy principle in 
its original form is considered as an indicator of the 

point of instability, Rei, and not of Ret,. 

It is well known that in round pipes transition 

actually occurs [S, 121 for 2000 < Re,,,, < 2300. As- 
suming the basic physical soundness of the Meissner’s 
entropy principle, and using some results of irreversible 

thermodynamics, the following modifications are 
suggested below, to produce Re,,,, more in line with 

the experimental results. 

THE THEOREM OF MINIMUM ENTROPY 

PRODUCTION AND TRANSITION 

The entropy production in the steady state is 

according to some authorities [13], with F being a 

so-called “dissipation function”. 

P[S] = F/T (5) 

whereas from the results of Millikan one can conclude 
that for the Navier-Stokes equations for incompress- 
ible, steady state flow the laminar viscous dissipation 
represents a minimum for the cases of pipe, infinite 
channel, and Couette flow [14]. His results can be 

summarized as 

6 
s 

EdA = -6(x-x,) 
A 

j~{+($+r+}d4 = 0. (6) 
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Letting u’ = &lay, and using the Eulerian equation 

0 (7) 

there results 

pT #f.k! -yi~pf& =O ( 1 ay ay 

which equation for i = 1 represents the Hagen- 
Poiseuille flow, and for i = 0 the flow in an infinite 
channel. For turbulent flow, the dissipation function 

4F,,, = & &%i/~y)2 dA should be replaced by 
F ,urb = J, z(&#y)dA, and a result analogous to 
equation (8) will be obtained if T is kept constant 
during the variational process, as suggested by Corrsin 
[15]. The above discussion illustrates the point that, 
in the steady state, the entropy production represents 
an extremum, which physically can be only a minimum. 

During the process of transition, even if the mean 
velocity U is kept constant [8], fluctuations in flow 
regimes occur, where, due to a rearrangement of 
velocity profiles, there occur kinetic energy changes 
like,e.g. (AKEham = 2~O(KE),(AKE~,,, = 1.05(KE), 
with (KE) = $U2 being the nominal kinetic energy 
based on the average velocity [16]. It is obvious that 
this kind of velocity rearrangements leads to an “excess 
entropy production”: one can proceed formally, 
according to the theory of the mean, letting P(S),=” = 
P(S),,,,, replace equation (l), and 

As is shown in Fig. 1, for a sudden transition in 
a round pipe the amount of disturbance is an important 
factor. Thus, Schiller [12] obtained experimentally a 
virtually complete transition at Re, = 2300 under 
condition of what he called “maximum disturbance” 
(unter grasster StBrung), by means of a flat plate that 
could be fixed at various distances from the entrance 
to the test pipe in the direction perpendicular to flow. 
As distance between the pipe and the plate increased, 
the transition curve became less steep (cf. Ref. [IZ]). 
Some determined efforts have been made to include 
the magnitude of disturbance in the quantitative 
handling of transition in pipes (e.g. discussion by Serrin 
[20]) but the results must still be considered only 
preliminary. 

P[S]’ = P[S] + (%‘[S]/a(KQ)AKE (9) 

be the true-kinetic energy change modified expression 
for entropy production of each regime on transition: 
equation (4) may be replaced by the formula 

It appears, therefore, that the semi-empirical method 
of handling transition by means of equation (10) has 
some merits in a simplified description of transition 
as a single “swing” from one regime to another under 
conditions of continuous entropy production corre- 
sponding roughly to the intermittency factor y = ) [6]. 
Also, the range of calculated values 2000 < Re,,, < 

2200 comes reasonably close to those observed experi- 
mentally for non-delayed transition 2000 < Re,,, < 

2300 [5,12]. 

RQ,, = (G~~u)“(~ -b) (10) 

(which still must be considered entirely semi-empirical) 

with 4 = [l + (~~-%,IGWIIP + W%,dW~)I. 
For a round pipe, 4 = 1.46 and equation (10) yields 

RQ,,,, = 2000 (based on the Blasius formula) and 

Re,,,, = 2200 (based on the M&S formula [l]), which 
compares favorably with the experimentally deter- 
mined range of critical Reynolds numbers for non- 
delayed transition in round pipes [S, 121. 

The flow fluctuations in the transition regime seem 
to be what is known as “relaxation oscillations” in 
non-linear mechanics 11211. Thus, it appears that the 
normal mode analysis as described, e.g. in [22], could 
hardly be expected to produce physically satisfactory 
results in systems exhibiting a high degree of non- 
linearity. As an example, the results of Lin [22], 
applied to an infinite channel, produce Rez,,i = 7080, 
about one order of magnitude higher than that ob- 
tained by equation (4), and clearly out of line with the 
physical reality represented by the results of Pate1 and 
Head [17] and Davies and White [IS]. 

For an infinite channel of width 2d, G = 12, a = 0.0790 At any rate, there appears now evidence, even going 
(according to Blasius) and 0.0382 (based on the M & S back to the original results by Hagen (cf., e.g. Fig, 4 
formula [l]), (AKE),,, = 154(KE) and (AK_QUrb = of [22]) that ReD,i calculated with the help of Meissner’s 
lQlS(KE) [16], so that Q, = 1.24, and equation (4) entropy principle has physical significance, as corre- 
yields 800 < Re2d,i < 1000, while equation (10) results sponding to f;,, where the first systematic deviations 
in 1000 < Rezd,,, < 1300. These findings may be com- from the ~agen-Poiseuille law could be observed 
pared, e.g. with the results of Pate1 and Head El?], [9-111, while the so-called normal mode analysis 
who got Rezd,cr = 1300, and independently from M &S gives very satisfactory results in a variety of other 
formula [l], a = 0.0376, and b = l/6, whereas Monin important geometries [22]. 

and Yaglom [18] quote Rezd,cr = 1000, based on the 
older results of Davies and White. 

Some additional discussion involving equation (IO) 
and its applications to Couette flow and to calculation 
of transition involving non-Newtonian mechanics may 
be found elsewhere [ 191. 

DISCUSSION OF THE RESULTS 
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CONCLUSIONS 

It has been shown that, at least in some geometries 
where the normal mode analysis does not seem to work. 
the analysis by stochastic methods has its legitimate 

place in the mechanics of transition. 
It must be stressed, however. that the method dis- 

cussed in this paper has nothing in common with the 
so-called delayed transition (with the highest known 

R+,sD,cr = 5 x 105) which implies a very considerable de- 
viation from the thermodynamic equilibrium [18] but 
is a phenomenon which is somewhat similar to super- 
saturation or undercooling [ 1,231. 

One practical consequence of some additional insight 
into mechanics of transition are possibilities of calcu- 
lation of heat transfer in transition region. as it appears 

in most heat-transfer applications that the occurrence 

of transition takes place in about the same fashion 
as it does in the isothermal flow, in the Reynolds 

number range 2000 < Rr, < 2300. Moreover. even a 
cursory examination of current literature [24] shows 

negligible differences between isothermal and non- 
isothermal mean velocity distributions and shear 

stresses. 
The results of this paper bear some similarity to 

those obtained recently by Jones and Launder [25]. 
but the present calculation of transition is closer to the 
physical reality. and is much simpler mathematically. 

Finally, the main conclusions of this paper may be 

stated as follows: (a) the transition is not isentropic. 
as has been originally recognized by Meissner and 
Schubert themselves [I], (b) the theoretically correct 
theorem of minimum entropy production in the steady 

state for each regime ipso ,fucto requires that there be 
an “excess entropy production” during transition, and 

(c) the results of this investigation must be considered 
by necessity strictly semi-empirical, as long as there is 
no satisfactory theory concerning turbulent flow in 
round pipes and infinite channels. and a theoretical 
explanation concerning the Blasius and the M & S ex- 

pressions for fiurb is not available. In view of the 

essentially non-deterministic character of such flows 

according to the present state of the art. such a theory 
is certainly not going to be available in the near 

future. if at all. 
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ANALYSE DES INSTABILITES DANS DES TUBES CIRCULAIRES 
ET DES CANAUX PAR DES METHODES STOCHASTIQUES 

Resume-L’auteur propose une application des methodes bastes sur les principes de la thermodynamique 
des phtnomenes irreversibles pour d&ire les conditions sous lesquelles un Ccoulement laminaire devient 
instable thermodynamiquement. On montre que le “point d’instabilit?’ peut etre calcule pour un 
tcoulement dans un tube circulaire dans un canal infini, suivant le principe d’entropie dit de Meissner. 

La transition instantanee peut etre calculte approximativement par une modification banale du principe 
d’entropie dd a Meissner. en utilisant le theoreme de la moyenne et en tenant compte du fait que. durant 
une transition idealisee (a vitesse moyenne constante et sans changement de temperature), l’energie 
cinetique effective du fluide, basee sur la distribution permanente des vitesses, peut @tre considerte 

separement pour chaque regime. 
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ANALYSE VON INSTABILITATEN IN RUNDEN ROHREN UND 
UNENDLICHEN KANitLEN MITTELS STOCHASTISCHER METHODEN 

Zusammenfassung - Der Autor schllgt in dem Aufsatz vor. Methoden der irreversiblen Thermodynamik 
zur Beschreibung der Bedingungen zu verwenden. unter denen eine zlhe. laminare Stromung thermo- 
dynamisch instabil wird. Es wird gezeigt. daD der “Instabihtltspunkt” fur die Strijmungen in runden 
Rohren und unendlichen KanPlen entsprechend dem sogenannten Meissnerschen Entropieprinzip 
berechnet werden kann. 

Der momentane. unverzogerte Umschlagspunkt kann naherungsweise berechnet werden durch einfache 
Modifikation des Meissnerschen Entropieprinzips entsprechend dem Theorem des Mittelwertes sowie 
unter Beriicksichtigung der Tatsache, da6 w&end eines idealisierten Umschlages (bei konstanter 
Durchschnittsgeschwindigkeit und konstanter Temperatur) die momentane kinetische Energie des Fluids 

fiir jeden Vorgang bezogen auf die stationLe Geschwindigkeits verteilung betrachtet werden mul3. 

AHAJIM3 HEYCTO@IMBOCTEti C IIOMOIIIbIQ CTOXACTWIECKHX METOAOB 
B KPYI-JIbIX TPYBAX I4 HEOFPAHMYEHHbIX KAHAJIAX 

AIIHOTB~III-B CTaTbe nnR OlWiGiHHR yCnOBHSi, npFi KOTOpbIX JIltMHHapHOe Bfl3KOe Te'ieHWe CTaHo- 

BWTCR TepMOnHHaMBYeCKEi HeyCTOfi'IHBblM, IlpeilnaraeTCR WCIIOnb30BaTb MeTOLIbI, OCHOBaHHble Ha 

IlpHHWilTaX TepMOnliHaMlGGi HeO6paTHMblX IIpOUeCCOB. nOKa3aHO,YTO HaOCHOBe TBK Ha3blBZieMOrO 

lTpHHl.Uilla 3HTpOl%Wi MelccHepa MOWCHO paCCWTaTb NTO'IKy HeyCTOfi'iHBOCTH)) AnR TeYeHWIl B 

KpyrnOii rpy6e II HeOrpaHWieHHOM KaHaJIe. 

MO~HO npH6nemeHHo ~~CCY~T~T~MOM~HTB~~HAKHOB~HARH~~CTO~SABOCTWCIIOMO~~H)MO~W- 
cjxfKauw4 acxomioronpamtarra 3HTponwer Me~ccHepacornacHoTeopeMeocpenHeM.CyreToMToro 

(PIIKTB,'ITO RMeeTCR Hlze&lIFi3FfpOBLUiHbl8 lTepeXOn(npH IIOCTORHHOti CpeAHeZi CKOpOCTA W 6e3 W3Me- 
HeHHJ7TeMIIepaTypbl)LiCT~HHyk3KAHeTWYeCKyIO3HeprAD XGi~KOCTH,OCHOBaHHyIO HaCTaUWOHapHOM 

pacnpeneneHuH CKO~~~TH, HeO6XonHMO paccMaTpuBaTb nnn kaanoro pemeMa B OTAenbHOCTW. 


