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Abstract—The author proposes in the paper an application of the methods based on the principles
of irreversible thermodynamics to describe the conditions under which laminar viscous flow becomes
unstable thermodynamically. It is shown that this “point of instability” may be calculated for the round
pipe and infinite channel flow according to the so-called Meissner’s entropy principle.

The actual undelayed transition may be approximately calculated by a trivial modification of the
original Meissnet’s entropy principle according to the theorem of the mean, and taking account of the
fact that during an idealized transition (at a constant mean velocity and without any temperature change)
the actual kinetic energy of the fluid based on the steady-state velocity distribution must be considered

separately for each regime.

NOMENCLATURE

a, coefficient in expression for f,, ;
A, area;
b, exponent in expression for f,, ;
d, half width of channel;
D, pipe diameter;
f, flow friction coefficient for viscous flow;
G, coefficient in expression for f,., ;
KE, = J. hPd4/ua,

A

based on actual velocity distribution during
each fraction of cycle, 1/7 velocity profile
during turbulent period;

L, significant length;

p, pressure;
Re,  Reynolds number, ULp/u;
s, entropy;
u, local velocity in the x direction;
U, average velocity in the x direction;
X, distance from pipe entrance;
¥ dimension perpendicular to flow direction;
7, fraction of cycle time flow stays turbulent;
U, dynamic viscosity;
0» density;
T, shear stress; T, = a(Rey ) *4pU3y/L;
{ >, average value.
Subscripts
D,d, significant length on which Re is based;

cr, signifies the critical Reynolds number;
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i, signifies the point where intermittent flow
starts;
lam,| . . .
turb signifies the character of the flow regime;
o, conditions at the origin.
INTRODUCTION

So FAR, attempts to treat transition in round pipes
and infinite channels mathematically have not been
particularly successful. Of some interest, therefore, are
the applications of the so-called “Meissner’s entropy
principle” [1] to the problem of transition [2-4] that
seem to show some promise in that respect [5].

Experimental observations (e.g. by Sackmann and
his collaborators [6, 7] and by Rotta [8]) have estab-
lished that the originally laminar pipe flow, as the
Reynolds number is increased, starts to fluctuate
between periods of alternating laminar and turbulent
flow. This “intermittent flow” starts with the inter-
mittency factor of y = 0* at Re;, called here “the point
of instability”, and ends at y = 1, when the flow became
completely turbulent.

The actual flow behavior before and after transition
can be re-constituted, for example, from the integration
of (ideally) fully laminar and fuily turbulent periods
which quickly follow each other [6-8]. The transition
is then observed when the time-averaged properties
(e.g. the pressure drop) exhibit a characteristic change
of slope, at the instant that the lower critical Reynolds
number, Re,,, has been reached as (ideally) the end
result of infinitesimal changes in Re, as shown, e.g.
in Fig. 1.
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FiG. 1. Instantaneous and average values of pipe friction

factor f in transition region by selected authors; Schiller’s

gap between disturbing plate and pipe entrance 0-6-1-2mm,

and x/D — oo; Curve 1= Hagen-Poiseuille formula for

fram» curve 2 = Blasius formula for f,, and curve 3 =

Meissner and Schubert formula for f,,,, adapted for low
Rep values.

STATEMENT OF THE PROBLEM
According to the Meissner’s entropy principle [1],
at the time of transition (considered to be an isothermal
process) when the quasi-steady, fully developed flow
has been reached,

(As)lam = (As)(urb (1)

which for an isothermal transition in a round pipe or
an infinite channel may be expressed by the usual
methods of reversible thermodynamics, for an incom-
pressible fluid, as

As = Ap/(Tp) (2)
which, however, for viscous flow could also be written as
As = fpU?(x—x0)/2TpL). 3

For fim = G/Rer, and fi,, = a(Re;) ™" combining
equations (1) and (2) results in

Re, = (G/a)'1~" @

where, for a round pipe, L = D, G = 64, a = 0-3164,
b =1 (based on the Blasius formula for viscous fric-
tion [5]). and a = 0-153, and b = 1/6 (according to a
formula developed by Meissner and Schubert [1]
(M & S formula here)), equation (4) yields Rep = 1200

(when Blasius formula is used) and Rej, = 1400 (when
M & S formula is used). The M & S formula was con-
sidered by the authors as a more appropriate one for
the relatively low range of Reynolds numbers where
non-delayed transition occurs (Fig. 1).

Following the experimental work of Sackmann et al.
[6. 7], it appears that for instantaneous value of f.,
the Blasius relation is quite satisfactory down to
Rep, < 2000, well below the range of its steady-state
validity. However, due to strongly empirical nature of
both formulas for f,.,, they may be used both to at
least mark off the range where at first the point of
instability Re;, and then the critical Reynolds number,
Re,,, s likely to occur during a non-delayed transition.

It is interesting to note that extrapolation of Rotta’s
data to y =0 produces a Reynolds number range
which is not inconsistent with the above results if the
point of instability is accepted to be in the range
1200 < Rep ; < 1400. Moreover, Whan and Rothfuss
[9] have independently observed at Re, = 1200 the
start of a small, but definite, upward trend from the
theoretical value of fi,,, . Results that appeared before
somewhat suspicious (cf. discussion of some of Knodel’s
conclusions [10] and of the Reichardt’s result [11]
Rep ., = 1500 by Schiller [12]) acquire an entirely
new significance if the Meissner’s entropy principle in
its original form is considered as an indicator of the
point of instability, Re;, and not of Re,,.

It is well known that in round pipes transition
actually occurs {5, 12] for 2000 < Rep ,, < 2300. As-
suming the basic physical soundness of the Meissner’s
entropy principle, and using some results of irreversible
thermodynamics, the following modifications are
suggested below, to produce Rep ., more in line with
the experimental results.

THE THEOREM OF MINIMUM ENTROPY
PRODUCTION AND TRANSITION
The entropy production in the steady state is
according to some authorities [13], with F being a
so-called “dissipation function”,

P[S]=F/T ()

whereas from the results of Millikan one can conclude
that for the Navier-Stokes equations for incompress-
ible, steady state flow the laminar viscous dissipation
represents a minimum for the cases of pipe, infinite
channel, and Couette flow [14]. His results can be
summarized as

5J EdA = —d(x—x,)
A

2 5
3 P—u> ;H—ug d4=0. (6)
4 Jy x

.
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Letting «' = du/dy, and using the Eulerian equation

o [0E\ @E -0 0
6y\5u' Ou
there results
o o
p—{ ¥ = |—yop/ox=0 {8)
Jvy ay
MION 4

which equation for i=1 represents the Hagen-
Poiseuille flow, and for i = 0 the flow in an infinite
channel. For turbulent flow, the dissipation function
$Fium = uf, 5(04/3y)*dA should be replaced by
Fun=[,7 6u/6y)dA and a result analogous to
equation (8) will be obtained if 7 is kept constant
duﬁng the variational process, as aussbawu u_y Corrsin
[15]. The above discussion illustrates the point that,
in the steady state, the entropy production represents
an extremum, which physically can be only a minimum.

During the process of transition, even if the mean
velocity U is kept constant [8], fluctuations in flow
regimes occur, where, due to a rearrangement of
velocity profiles, there occur kinetic energy changes
like, e.g. (AK E)ym = 220(KE>, (AKE)y,p, = 1-05(KE>,
with (KE» = $U? being the nominal kinetic energy
based on the average velocity [16]. It is obvious that
this kind of velocity rearrangements leads to an “excess

entropy production”; one can proceed formally,
according to the theorv of the mean, letting P(S} =

QLCOIAINE O W00 INCOTy O U0 IICall, (LRg 2 am

P{S)ur replace equation (1), and

PIST = PICT 2 APIST/A/ K EMA
e IR G E S AN 2P 14}

be the true-kinetic energy change modified expressxon

for antrany nrodnction af each recime trangiti
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equation (4) may be replaced by the formula
(10)

(which still must be considered entirely semt-empirical)
with ¢ = [1+ (AKE}ym/<KEY]/[1+ (AKE)yo /<KE].
For a round pipe, ¢ =146 and equation (10) yields
Rep ., = 2000 (based on the Blasius formula) and
Rep , = 2200 (based on the M & S formula [1]), which
compares favorably with the experimentally deter-
mined range of critical (\6}'1‘101(‘13 numbers for non-
delayed transition in round pipes [5, 12].

Foran infinite channel of width 24, G = 12, ¢ = 0-0790
{according to Blasius) and 0-0382 (based on the M& S
formula [1]), (AKE},m = 1'54(KE) and (AKE), =
1-045¢KE> [16], so that ¢ = 124, and equation (4)
vields 800 < Re,, ; < 1000, while equation (10) results
in 1000 < Rey, ,, < 1300. These findings may be com-

nara, aa with tha vagilte A ntal o an
A h o th 1 f D 1 d Waad 7171
yaxvu, \-/-s' FYFRIUIL L1I0 1WQUILD UL X dtvl Qi ivau LJ. IJ,

who got Re,, ., = 1300, and independently from M & S
formula [1], a = 00376, and b = 1/6, whereas Monin
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and Yaglom [18] quote Re,; ., = 1000, based on the

older results of Davies and White.

Some additional discussion involving equation {10}
and its applications to Couette flow and to calculation
of transition involving non-Newtonian mechanics may

be found elsewhere [19].

DISCUSSION OF THE RESULTS

As is shown in Fig. 1, for a sudden transition in
around pipe the amount of disturbance is an important
factor. Thus, Schiller [12] obtained experimentally a
virtually complete transition at Re, = 2300 under
condition of what he called “maximum disturbance”
(unter grosster Storung), by means of a flat plate that
could be fixed at various distances from the entrance
to the test pipe in the direction perpendicular to flow.
As distance between the pipe and the plate increased,
the transition curve became less steep (cf. Ref. [12]).
Some determined efforts have been made to include
the magnitude of disturbance in the quantitative
handling of transition in pipes (¢.g. discussion by Serrin
[20]) but the results must still be considered only
preliminary.

It appears, therefore, that the semi-empirical method
of handling transition by means of equation (10) has
some merits in a simplified description of transition
as a single “swing” from one regime to another under
conditions of continuous entropy nrndnr‘hnn corre-

sponding roughly to the intermittency factor y = § [6].
Also, the range of calculated values 2000 < Rep , <
2200 comes reasonably close to those observed experi-
mentally for non-delayed transition 2000 < Rep ., <
2300 [5, 12].

The flow fluctuations in the transition regime seem
to be what is known as “relaxation oscillations” in

nwan_lHnanr mochanise 13171
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Thus, it appears that the
normal mode analysis as described, e.g. in [22], could
hardly be expected to produce physically satisfactory
results in systems exhibiting a high degree of non-
linearity. As an example, the results of Lin [22],
applied to an infinite channel, produce Re,,; = 7080,
about one order of magnitude higher than that ob-
tained by equation (4), and c]early out of line with the

wveiral ran P ey A e PO ol b PRI, IR
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Head [17] and Davies and White [18].

At any rate, there appears now evidence, even going
back to the original results by Hagen (cf, eg. Fig. 4
of [22]) that Re,, ; calculated with the help of Meissner’s
entropy principle has physical significance, as corre-
sponding to fj,,, where the first systematic deviations
from the Hagen—PoiseuilIe law could be observed
{9 11] while the so-called normal mode aﬂaxy)xa
gives very satisfactory results in a variety of other
important geometries [22].
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CONCLUSIONS

It has been shown that, at least in some geometries
where the normal mode analysis does not seem to work,
the analysis by stochastic methods has its legitimate
place in the mechanics of transition.

It must be stressed, however, that the method dis-
cussed in this paper has nothing in common with the
so-called delayed transition (with the highest known
Rep ., = 5 x 10%) which implies a very considerable de-
viation from the thermodynamic equilibrium [ 18] but
is a phenomenon which is somewhat similar to super-
saturation or undercooling {1, 23].

One practical consequence of some additional insight
into mechanics of transition are possibilities of calcu-
lation of heat transfer in transition region. as it appears
in most heat-transfer applications that the occurrence
of transition takes place in about the same fashion
as it does in the isothermal flow, in the Reynolds
number range 2000 < Rep < 2300. Moreover. even a
cursory examination of current literature [24] shows
negligible differences between isothermal and non-
isothermal mean velocity distributions and shear
stresses.

The results of this paper bear some similarity to
those obtained recently by Jones and Launder [25].
but the present calculation of transition is closer to the
physical reality. and is much simpler mathematically.

Finally. the main conclusions of this paper may be
stated as follows: (a) the transition is not isentropic.
as has been originally recognized by Meissner and
Schubert themselves [1], (b} the theoretically correct
theorem of minimum entropy production in the steady
state for each regime ipso facto requires that there be
an “excess entropy production” during transition. and
(c) the results of this investigation must be considered
by necessity strictly semi-empirical. as long as there is
no satisfactory theory concerning turbulent flow in
round pipes and infinite channels, and a theoretical
explanation concerning the Blasius and the M& S ex-
pressions for f,,., is not available. In view of the
essentially non-deterministic character of such flows
according to the present state of the art. such a theory
is certainly not going to be available in the near
future. if at all.
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ANALYSE DES INSTABILITES DANS DES TUBES CIRCULAIRES
ET DES CANAUX PAR DES METHODES STOCHASTIQUES

Résumé—L’auteur propose une application des méthodes basées sur les principes de la thermodynamique
des phénomeénes irréversibles pour décrire les conditions sous lesquelles un écoulement laminaire devient
instable thermodynamiquement. On montre que le “point d’instabilité” peut étre calculé pour un
écoulement dans un tube circulaire dans un canal infini, suivant le principe d’entropie dit de Meissner.
La transition instantanée peut étre calculée approximativement par une modification banale du principe
d’entropie dit & Meissner, en utilisant le théoréme de la moyenne et en tenant compte du fait que, durant
une transition idéalisée (4 vitesse moyenne constante et sans changement de température), Iénergie
cinétique effective du fluide, basée sur la distribution permanente des vitesses, peut étre considérée
séparément pour chaque régime.

ANALYSE VON INSTABILITATEN IN RUNDEN ROHREN UND
UNENDLICHEN KANALEN MITTELS STOCHASTISCHER METHODEN

Zusammenfassung — Der Autor schldgt in dem Aufsatz vor. Methoden der irreversiblen Thermodynamik
zur Beschreibung der Bedingungen zu verwenden. unter denen eine zihe, laminare Stromung thermo-
dynamisch instabil wird. Es wird gezeigt, daB der “Instabilitatspunkt” fiir die Strémungen in runden
Rohren und unendlichen Kanilen entsprechend dem sogenannten Meissnerschen Entropieprinzip
berechnet werden kann.

Der momentane, unverzdgerte Umschlagspunkt kann ndherungsweise berechnet werden durch einfache
Modifikation des Meissnerschen Entropieprinzips entsprechend dem Theorem des Mittelwertes sowie
unter Beriicksichtigung der Tatsache, daB wihrend eines idealisierten Umschlages (bei konstanter
Durchschnittsgeschwindigkeit und konstanter Temperatur) die momentane kinetische Energie des Fluids

fiir jeden Vorgang bezogen auf die stationidre Geschwindigkeits verteilung betrachtet werden muf.

AHAJIU3 HEYCTOMYUBOCTEN C MOMOLIb}O CTOXACTUYECKHNX METOO0OB
B KPVYTJIbIX TPYBAX U HEOI'PAHMYEHHBIX KAHAJIAX
AnHoTaunA — B cTaThe 0Mif ONMMCAHUS YCIOBHH, IPH KOTOPBIX JJAMHHAPHOE BA3KOE TEYEHUE CTAHO-
BHTCS TEPMOAHWHAMHYECKH HEYCTOMYMBBIM, MPEANATracTCAd HCHOJb30BaTh METOIbI, OCHOBAHHbIE HA
NPHHUUTAX TEPMOOHHAMHUKH HeOOpaTHMBIX Mpoueccos. IToka3aHo, YTO HAa OCHOBE Tak HA3bIBAEMOTO
NpHHUMNA SHTPONMHHM MelicCHepa MOXHO pacCYMTATb «TOYKY HEYCTOWYHMBOCTH» NJis TCYEHHS B
Kpyr/ioi Tpybe U HeOrpaHMYEHHOM KaHase.

MoxHo npubHKeHHO PACCYMTAaTh MOMEHT BO3HHKHOBEHHSA HEYCTOWYMBOCTH C IIOMOILBK MOLHM-~
(MKaUAK MCXOJIHOTO MPUHLIMIA IHTPONHH MeiiccHepa cornacHo Teopeme o cpeaseM. C y4eTOM TOro
¢akTa, 4YTO MMEETCA NIOeaTM3HPOBAHHBIA epexol (IPH OCTOAHHOM CpelHel cKopocTH K 6e3 Mime-
HEHUS TEMIIEPaTyPbl) HCTHHHYIO KHHETHYECKYHO JHEPTHIO U IKOCTH, OCHOBAHHYIO HA CTALUHOHAPHOM
PacrnpeaeneHHd CKOpOCTH, HEO6XOAMMO paccMaTpHMBaTh U1 KaXOOro peXHMa B OTHEILHOCTH.
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